A New Weighted Information Generating Function for Discrete Probability Distributions

Amit Srivastava, Shikha Maheshwari

Department of Mathematics, Jaypee Institute of Information Technology, Noida (Uttar Pradesh), India
Emails: raj_amit377@yahoo.co.in maheshwari.shikha23@gmail.com

Abstract: The object of this paper is to introduce a new weighted information generating function whose derivative at point 1 gives some well known measures of information. Some properties and particular cases of the proposed generating function have also been studied.

Keywords: Information generating function, discrete probability distribution, utility distribution.

1. Introduction

The moment generating function of a probability distribution is a convenient tool for evaluating mean, variance and other moments of a probability distribution and an effective embodiment of the properties of the same for various analytical processes. The successive derivatives of the moment generating function at point 0 gives the successive moments of a probability distribution if these moments exist. In a similar way, the successive derivatives of the Information Generating Function (IGF) of a probability distribution, evaluated at point 1, gives some statistical entities associated with the probability distribution. The information generating function was introduced by S. Golomb [2] in a correspondence and is given by
(1) \[I(t) = \sum_{i \in N} p_i^t, \]

where \(\{p_i\} \) is a complete probability distribution with \(i \in N \), \(N \) being a discrete sample space and \(t \) is a real or a complex variable. The first derivative of the above function, at point \(t = 1 \), gives the negative Shannon’s entropy of the corresponding probability distribution, i.e., we have

(2) \[-\left(\frac{\partial I(t)}{\partial t} \right)_{t=1} = -\sum_{i \in N} p_i \ln p_i = H_n(P), \]

where \(H_n(P) \) is the well known Shannon’s entropy[5]. Further we have

(3) \[(-1)^r \left(\frac{\partial^r I(t)}{\partial t^r} \right)_{t=1} = (-1)^r \sum_{i \in N} p_i (\ln p_i)^r. \]

Except for factor of \((-1)^r\), the \(r \)-th derivative of IGF given by (1) gives the \(r \)-th moment of the self-information of the distribution.

This technique works equally well for discrete and continuous distributions. Moreover, the information generating function summarizes those aspects of the distribution which are invariant under a measure preserving the rearrangements of the probability space. Golomb obtained simple expressions of the IGF defined by (1) for uniform, geometric and \(\beta \)-power distributions. However, the quantity (2) measures the average information associated with the probabilities of a number of events but does not take into account the effectiveness or importance of these events. Belis and Guisas [1] raised the very important issue of integrating the quantitative, objective and probabilistic concept of information with the qualitative, subjective and non-stochastic concept of utility. They laid down the two possible postulates for this purpose viz.

- The “useful” information from two independent events is the sum of the ‘useful’ information given by two events separately.
- The “useful” information given by an event is directly proportional to its utility.

On the basis of these postulates, they proposed the following weighted measure of information

(4) \[-\sum_{i \in N} u_i p_i \ln p_i = H(P, U), \]

where the utility distribution is \(U = (u_1, u_2, ..., u_n, ...) \) and the probability distribution is \(P = (p_1, p_2, ..., p_n, ...) \).

The measure (4) is associated with the following utility information scheme [4]:

(5) \[
\begin{pmatrix}
E_1 & E_2 & \ldots & E_n \\
p_1 & p_2 & \ldots & p_n \\
u_1 & u_2 & \ldots & u_n
\end{pmatrix},
\]

\[0 \leq p_i \leq 1, \quad i \in N, \sum_{i \in N} p_i = 1, \quad u_i > 0. \]
Here \((E_1, E_2, \ldots, E_n, \ldots) \) denote a family of events with respect to some random experiment and \(u_i \) denotes the utility of an event \(E_i \) with probability \(p_i \). In general, the utility \(u_i \) of an event is independent on its probability of occurrence \(p_i \).

Analogous to (4), H o o d a and B h a k e r [3] defined the following weighted information generating function:

\[
M(P, U, t) = \sum_{i \in N} u_i p_i^t, \quad t \geq 1.
\]

Here also \((p_1, p_2, \ldots, p_n, \ldots) \) and \((u_1, u_2, \ldots, u_n, \ldots) \) are the probability and utility distributions respectively as defined in (4) and \(t \) is a real or a complex variable. Further, we have

\[
-\left(\frac{\partial M(P, U, t)}{\partial t} \right)_{t=1} = -\sum_{i \in N} u_i p_i \ln p_i = H(P, U).
\]

where \(H(P, U) \) is a measure given by (4).

In this paper we have defined a new weighted information generating function whose derivative at point 1 gives the measure (4). Some properties and particular cases of this new function have been also discussed. Without essential loss of insight, we have restricted ourselves to discrete probability distributions.

2. New information generating function

The following function is considered:

\[
I(P, U, t) = \sum_{i \in N} p_i^{1-u_i(1-t)}, \quad t \geq 1.
\]

Here \(P = (p_1, p_2, \ldots, p_n, \ldots) \) and \(U = (u_1, u_2, \ldots, u_n, \ldots) \) are the probability and utility distributions respectively, as defined in (5) and \(t \) is a real or a complex variable. Clearly \(I(P, U, 1) = 1 \) and since \(0 \leq p_i \leq 1, i = 1, 2, \ldots, n \), the function (8) is convergent for all \(u_i > 0 \). If we take \(u_i = 1 \) for all \(i \), the function (8) reduces to (1).

It further follows from (8) that

\[
-\left(\frac{\partial I(P, U, t)}{\partial t} \right)_{t=1} = -\sum_{i \in N} p_i \ln p_i = H(P, U).
\]

Therefore the function defined by (8) can be defined as the weighted information generating function for the measure defined by (4).

Further we have

\[
(-1)^r \left(\frac{\partial^r I(P, U, t)}{\partial t^r} \right)_{t=1} = (-1)^r \sum_{i \in N} p_i (u_i \ln p_i)^r.
\]

The entity \(u_i \log p_i \) can be seen as generalized (or weighted) self information for the utility information scheme given by (5). Therefore, except for factor of \((-1)^r\), the \(r \)-th derivative of the weighted IGF given by (8) gives the \(r \)-th moment of the generalized self-information for the scheme defined by (5).
We consider three particular cases.

a) Uniform Probability Distribution & Constant Utility Distribution

In Probability theory and Statistics, the uniform distribution is a **probability distribution** whereby a finite number of equally spaced values are equally likely to be observed; every one of \(n \) values has equal probability of \(\frac{1}{n} \).

If we consider

\[p_i = \frac{1}{n}, \quad i = 1, 2, \ldots \text{(Uniform Probability Distribution)} \]

and \(u_1 = u_2 = \ldots = u \) (say) (Constant Utility Distribution)

then the weighted IGF given by (8) is reduced to

\[I(P, U, t) = \sum_{i \in N} \left(\frac{1}{n} \right)^{1-u(1-t)}, \quad t \geq 1. \]

Further we have

\[-\left(\frac{\partial I(P, U, t)}{\partial t} \right)_{t=1} = \ln(n)^u = u \ln n. \]

This is exactly the Shannon entropy for uniform probability distribution and constant utility distribution.

b) Geometric Probability Distribution & Constant Utility Distribution

In Probability theory and Statistics, the geometric distribution is a **probability distribution** of the number \(X \) of Bernoulli trials needed to get one success, supported on the set \{0, 1, 2, 3, \ldots\}. If we consider

\[p_i = q \cdot p^i, \quad i = 0, 1, 2, \ldots, \infty \text{ (Geometric Probability Distribution)} \]

and \(u_1 = u_2 = \ldots = u \) (say) (Constant Utility Distribution)

then the weighted IGF given by (8) reduces to

\[I(P, U, t) = \frac{q^{1-u(1-t)}}{1-p^{1-u(1-t)}} \]

and as a result

\[-\left(\frac{\partial I(P, U, t)}{\partial t} \right)_{t=1} = -u \left(\frac{p \ln p + q \ln q}{q} \right). \]

This is exactly the Shannon entropy for geometric probability distribution and constant utility distribution.

c) \(\beta \)-power Probability Distribution & Constant Utility Distribution

The power distribution is defined as the inverse of the Pareto distribution. If we consider
\[p_i = \frac{i^{-\beta}}{\zeta(\beta)}, \zeta(\beta) = \sum_{i \in \mathbb{N}} i^{-\beta} \text{ (}\beta\text{-power Probability Distribution)} \]

and \(u_1 = u_2 = ... = u \) (say) (Constant Utility Distribution),

then the weighted IGF given by (8) reduces to

\[I(P, U, t) = \sum_{i \in \mathbb{N}} \left(\frac{i^{-\beta}}{\sum_{i \in \mathbb{N}} i^{-\beta}} \right)^{1-u(1-t)}, \]

and as a result

\[-\left(\frac{\partial I(P, U, t)}{\partial t} \right)_{t=1} = u \left(\ln \zeta(\beta) - \frac{\beta \zeta'(\beta)}{\zeta(\beta)} \right). \]

This is exactly the Shannon entropy for \(\beta\)-power probability distribution and constant utility distribution.

3. Information Generating Function for power distributions

Let

(11) \(\Gamma_n = \{ P = (p_1, p_2, ..., p_n, ...) : p_i \geq 0, i \in \mathbb{N}, \sum_{i \in \mathbb{N}} p_i \leq 1 \}, n = 2, 3, ... \)

denote the set of all finite discrete (n-ray) generalized probability distributions.

Consider the power distribution

(12) \(P^\beta = \left(\frac{p_i^\beta}{\sum_{i \in \mathbb{N}} p_i^\beta} \right), \beta > 0, \)

obtained from (11). Replacing \(p_i \) by \(\frac{p_i^\beta}{\sum_{i \in \mathbb{N}} p_i^\beta} \) in (8), we obtain

(13) \(I(P^\beta, U, t) = \sum_{i \in \mathbb{N}} \left(\frac{p_i^\beta}{\sum_{i \in \mathbb{N}} p_i^\beta} \right)^{1-u(1-t)}, \quad t \geq 1, \)

which can be taken as the generalized information generating function for probability distributions defined by (11). From (13), for constant utility distribution, it is clear that

\[I(P^{i^\beta}, U, t) = I(P^\beta, U, t) \left(\sum_{i \in \mathbb{N}} P_i^\beta \right)^{1-u(1-t)}. \]

Here

\[P^\beta = \left\{ \frac{P_i^\beta}{\sum_{i \in \mathbb{N}} P_i^\beta} \right\}_{i \in \mathbb{N}} \quad \text{and} \quad P^{(\beta)} = \left\{ P_i^\beta \right\}_{i \in \mathbb{N}}. \]

Fig. 1 shows the variation of the new IGF given by (8) for uniform and non-uniform probability and utility distributions.
Fig. 1. The variation of the new IGF given by (8) for uniform and non-uniform probability and utility distributions

Acknowledgements: The authors wish to express their sincere thanks to the referee for the valuable suggestions which helped in improving the presentation and quality of the paper.
References